Skip to main content

Gradient Boosting Classification

Gradient boosting classification is a machine learning algorithm that uses a series of weak learners to create a strong classifier. The weak learners are trained sequentially, with each learner being trained to correct the errors made by the previous learners. This process is repeated until the desired level of accuracy is achieved.

Gradient boosting classification is a powerful algorithm that can be used to solve a variety of classification problems. It is particularly well-suited for problems where the data is noisy or imbalanced. However, it can be computationally expensive to train, and it can be prone to overfitting.

Method: POST Authorization: API Key
https://engine.raccoon-ai.io/api/v1/ml/classification/gradboost

Authorization

TypeKeyValue
API KeyX-Api-Keyrae_######

Request Body

SectionKeyData TypeRequiredDescription
traindatajsontrueData that use to train the model
featureslisttrueInput features (X)
targetslisttrueOutput targets (y)
configjsonfalseTrain configurations
predictdatajsontrueData that need to predicted by the trained model
configjsonfalsePredict configurations

Types

{
"train" : {
"data" : <json_data>,
"features": <list>,
"targets" : <list>,
"config" : {
"std_scale": <boolean>,
"encoder" : <"label" | "drop">,
"val_size" : <float>
}
},
"predict": {
"data": <json_data>,
"config": {
"include_inputs": <boolean>,
"round": <int>
}
}
}

Sample

{
"train": {
"data": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7,
"2": 153441.51,
"3": 144372.41,
"4": 142107.34,
"5": 131876.9,
"6": 134615.46,
"7": 130298.13,
"8": 120542.52,
"9": 123334.88
},
"Administration": {
"0": 136897.8,
"1": 151377.59,
"2": 101145.55,
"3": 118671.85,
"4": 91391.77,
"5": 99814.71,
"6": 147198.87,
"7": 145530.06,
"8": 148718.95,
"9": 108679.17
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53,
"2": 407934.54,
"3": 383199.62,
"4": 366168.42,
"5": 362861.36,
"6": 127716.82,
"7": 323876.68,
"8": 311613.29,
"9": 304981.62
},
"State": {
"0": "New York",
"1": "California",
"2": "Florida",
"3": "New York",
"4": "Florida",
"5": "New York",
"6": "California",
"7": "Florida",
"8": "New York",
"9": "California"
},
"Profit": {
"0": 192261.83,
"1": 191792.06,
"2": 191050.39,
"3": 182901.99,
"4": 166187.94,
"5": 156991.12,
"6": 156122.51,
"7": 155752.6,
"8": 152211.77,
"9": 149759.96
}
},
"features": ["R&D Spend", "Administration", "Marketing Spend", "Profit"],
"targets": ["State"],
"config": {
"std_scale": true,
"encoder": "label"
}
},
"predict": {
"data": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7
},
"Administration": {
"0": 136897.8,
"1": 151377.59
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53
},
"Profit": {
"0": 471784.1,
"1": 443898.53
}
},
"config": {
"include_inputs": true,
"round": 2
}
}
}

Reponse Body

KeyData TypeDescription
successbooleanIndicate the success of the request
msgstringMessage indicators
errorstringError information, only set if success is false
resultjsonResult, only set if success is true
scorejsonAccuracy scores of the training and testing phases, only set if success is true
generated_tsfloatGenerated timestamp

Types

{
"success": <boolean>,
"msg": <string>,
"error": <string>,
"result": <json>,
"score": {
"train": <float>,
"test": <float>
},
"generated_ts": <timestamp>
}

Sample

{
"success": true,
"msg": "Model trained and predicted successfully",
"error": null,
"result": {
"R&D Spend": {
"0": 165349.2,
"1": 162597.7
},
"Administration": {
"0": 136897.8,
"1": 151377.59
},
"Marketing Spend": {
"0": 471784.1,
"1": 443898.53
},
"Profit": {
"0": 190209.72,
"1": 186863.18
},
"State": {
"0": "New York",
"1": "California"
}
},
"score": {
"train": 0.942446542689397,
"validation": 0.9649618042060305
},
"saved_in": null,
"generated_ts": 1685439220.425382
}